Roll No.	•••••
----------	-------

D-3758

M. A./M. Sc. (Final) EXAMINATION, 2020

MATHEMATICS

(Optional)

Paper Third (i)

(Graph Theory)

Time: Three Hours]

[Maximum Marks : 100

Note : Attempt any *two* parts from each question. All questions carry equal marks.

- 1. (a) Prove that any homomorphism is the product of a connected and a discrete homomorphism.
 - (b) For two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2),$ where $V_1\cap V_2=\phi$ and $E_1\cap E_2=\phi,$ define the following:
 - (i) $G_1 + G_2$
 - (ii) $G_1 \oplus G_2$
 - (iii) $G_1 \times G_2$
 - $(iv) \quad G_1 \wedge G_2$
 - (v) $G_1 \circ G_2$

where binary operations have their usual meaning.

(c) Write spectral properties of a graph.

(A-76) P. T. O.

- (c) For any graph G, prove that $\alpha_0 + \beta_0 = n$.
- 3. (a) Prove that a graph is triangulated iff every minimal vertex-separator induces a complete subgraph.
 - (b) Prove that a graph G is a permutation graph iff G and \overline{G} are comparability graphs.
 - (c) Prove that every graph on $\binom{k+l}{k}$ vertices contains either a complete subgraph on k+1 vertices or an independent set of l+1 vertices.
- 4. (a) Prove that the vertex group Γ_0 and the induced edge group Γ_1 of a graph G are isomorphic iff G has at most one isolated vertex and has no component isomorphic to K_2 .
 - (b) Prove that if the eigen values of a graph are all distinct, then $\Gamma(G)$ is abelian and every element of Γ has order 2.
 - (c) Prove that the chromatic polynomial is multiplicative on the components.

5. (a) Prove that the condensation D* of any digraph is

[3]

(b) Prove that the transportation network has a feasible flow iff $d(Y \cap \overline{S}) - s(X \cap \overline{S}) \le c(S, \overline{S})$ for every subset of S of V.

(c) State and prove Köning's theorem.

acyclic.

D-3758 200