Roll No.

D-3704

B. Sc. (Part III) EXAMINATION, 2020

MATHEMATICS

(Optional)

Paper Third (E)

(Mathematical Modelling)

Time : Three Hours

[Maximum Marks : 50

Note : Attempt any *two* parts of each question. All questions carry equal marks.

Unit—I

- 1. (a) Consider the following differential equations :
 - (i) x' = x
 - (ii) x' = x t

Using syncline, draw slope field by hand for each equation.

(b) Find the unique solution of the differential equation :

$$\frac{dy}{dx} = x + y$$

passing through (0, 1).

(c) Describe the mathematical model for spread of technological innovations.

[2]

Unit—II

- 2. (a) Discuss discrete population model for single species.
 - (b) Discuss the single species population models.
 - (c) Describe age-structured population model.

Unit—III

- 3. (a) Discuss the Lanchester's combat model.
 - (b) Discuss the Richardson's model for Arms Race.
 - (c) Describe mathematical model for one-way traffic problem.

Unit—IV

- 4. (a) Find the four state eight period fixed points.
 - (b) Compare deterministic and probabilistic epidemic models.
 - (c) Describe P. D. E. model for stochastic epidemic process with no removal.

Unit—V

5. (a) Explain mathematical model for logistic population growth.

(b) Show that if
$$p = q = \frac{1}{2}$$
, the solution of :
 $p_n = p p_{n+1} + q p_{n-1}$
is $p_n = 1 - \frac{n}{a}$.

(c) Discuss a formal model for consensus and negotiation in environmental management.

D-3704 2,600

(A-67)