D-990

Roll No.

D-990

M. A./M. Sc. (Fourth Semester) (Main/ATKT) EXAMINATION, May-June, 2020

MATHEMATICS

Paper Fourth (B)

(Wavelets-II)

Time : Three Hours]

[Maximum Marks : 80

1 each

Note : Attempt all Sections as directed.

Section—A

(Objective/Multiple Choice Questions)

Note : Attempt all questions.

Choose the correct answer :

- 1. If $\psi \in L^2(\mathbf{R})$, then expression for $(\psi_{j,k})^{\wedge}(\xi)$ is :
 - (a) $2^{j/2}\psi(2^jx-k)$
 - (b) $2^{-j/2}\hat{\psi}(2^{-j}\xi)e^{i2^{-j}k\xi}$

(c) $2^{-j/2}\hat{\psi}(\xi) e^{i 2^{-j}k\xi}$

(d) None of the above

2. If $\psi \in L^2(\mathbf{R})$, then which of the following is true ?

[2]

(a)
$$\sum_{j,k\in\mathbb{Z}} |\langle f, \psi_{j,k} \rangle|^2 \le ||f||_2^2$$

(b)
$$\sum_{j,k\in\mathbf{Z}} |\langle f, \psi_{j,k} \rangle|^2 \ge ||f||_2^2$$

(c)
$$\sum_{j,k\in\mathbb{Z}} \left| < f, \psi_{j,k} > \right|^2 = \left\| f \right\|_2^2$$

- (d) None of the above
- 3. If {e_j : j = 1, 2,} is a system of vectors in a Hilbert space
 H, satisfying :

$$||f||_{2}^{2} = \sum_{j=1}^{\infty} |\langle f, e_{j} \rangle|^{2}$$

then for $\{e_j : j = 1, 2, ...\}$ to be j = 1 a orthnormal basis condition is :

- (a) $||e_j|| \ge 1$ for j = 1, 2,
- (b) $||e_j|| = 1$ for $j = 1, 2, \dots$
- (c) $||e_j|| \le 1$ for j = 1, 2,
- (d) None of the above

- [3]
- 4. If $\{e_j : j = 1, 2,\}$ is a system of vectors in H, then the expression for Nth partial sum for $f \in H$ is :

(a)
$$S_N = \sum_{j=1}^{\infty} \langle f, e_j \rangle e_j$$

(b) $S_N = \sum_{j=0}^{N} \langle f, e_j \rangle e_j$
(c) $S_N = \sum_{j=1}^{N} \langle f, e_j \rangle e_j$

- (d) None of the above
- 5. Give an example of dense subset of $L^2(\mathbf{R})$.
- 6. Define $l^2(z)$.
- 7. If ψ is an MRA wavelet, then :

 $\dim F_{\psi}(\xi) = ?$

for $\xi \in T$:

- (a) 1
- (b) 0
- (c) ∞
- (d) None of the above
- 8. Limit of a sequence of MRA wavelet is a wavelet.
 - (a) Band limited
 - (b) Convergent
 - (c) Continuous
 - (d) None of the above

D-990

- 9. Define low pass filter.
- 10. Define $V_0^{\mathbf{I}}$.
- 11. Every orthonormal wavelet is a frame. (True/False)
- 12. Domain and codomain of a frame operator F are respectively :
 - (a) H and $l^2(J)$
 - (b) $l^2(\mathbf{R})$ and H
 - (c) $l^2(\mathbf{R})$ and $l^2(\mathbf{J})$
 - (d) None of the above
- 13. Frame bounds for Zak transform $\mathbf{R}_{g}(s,t)$ are given by :
 - (a) $0 < A \le |\mathbf{R}_g(s,t)| \le B. < \infty$
 - (b) $-\mathbf{A} < \left| \mathbf{R}_{g}(s,t) \right| \le +\mathbf{B} < \infty$
 - (c) $0 < A \le |R_g(s,t)|^2 \le B < \infty$
 - (d) None of the above
- 14. Domain and codomain of a Zak transform R are given by :
 - (a) $L^2(\mathbf{T}^2)$ and $L^2(\mathbf{R})$ respectively.
 - (b) $L^2(\mathbf{R})$ and $L^2(\mathbf{T}^2)$ respectively.
 - (c) $L^2(\mathbf{R}^2)$ and $L^2(\mathbf{T})$ respectively.
 - (d) None of the above
- 15. Define $H^2(\mathbf{R})$.

D-990

16. An expression of discrete cosine bases $u_{j,k}(x) = ?$

(a)
$$u_{j,k}(x) = \sqrt{\frac{2}{l_j}} w_j(x) \cos\left(\pi \left(k + \frac{1}{2}\right) \left(\frac{x - a_j}{l_j}\right)\right)$$

(b) $u_{j,k}(x) = \sqrt{\frac{2}{l_j}} w_j(x)$
(c) $u_{j,k}(x) = \sqrt{\frac{2}{w_j(x)}} l_j(x) \cos(\pi kx)$

(d) None of the above

- 17. The discrete version for local sine and cosine bases support of $F_j = ?$, where F_j is a subspace of $l^2(\mathbb{Z})$.
- 18. The expression for filter $m_1(\xi)$ used in the decomposition algorithm of wavelets is :
 - (a) $\sum_{n\in\mathbb{Z}}\alpha_n e^{in\xi}$
 - (b) $e^{i\xi}\overline{m_0(\xi)}$
 - (c) $e^{i\xi}\overline{m_0(\xi+\pi)}$
 - (d) None of the above
- 19. An expression for $\phi_{j-1,k}(x)$, which belongs to V_{j-1} is :

(a)
$$\sqrt{2} \sum_{n \in \mathbb{Z}} \alpha_n \phi_{j,k}(x)$$

(b) $\sqrt{2} \sum_{n \in \mathbb{Z}} \alpha_n \phi_{j,2k-n}(x)$
(c) $\sqrt{2} \sum_{n \in \mathbb{Z}} \alpha_n \psi_{j,2k-n}(x)$

(d) None of the above

20. An expression for $d_{j-1, k}$ in the decomposition algorithm of

[6]

Haar wavelet is :

(a)
$$d_{j-1}, k = \sqrt{2} \left[\frac{C_{j,2k-1} - C_{j,2k}}{2} \right]$$

(b)
$$d_{j-1}, k = \sqrt{2} C_{j,2k-1}$$

(c)
$$d_{j-1, k} = \sqrt{2} \left[\frac{C_{j,k-1} - C_{j,k}}{2} \right]$$

(d) None of the above

Section—B 2 each

(Very Short Answer Type Questions)

Note : Attempt all questions.

- 1. Write two basic equations for $\psi \in L^2(\mathbf{R})$ to be an orthonormal wavelet.
- 2. Define M. S. F. wavelet.
- Write necessary and sufficient conditions for a function
 φ ∈ L²(**R**) to be a scaling function.
- 4. If ψ is an orthonormal wavelet and :

$$\mathbf{G}_{n}(\boldsymbol{\xi}) = \sum_{j=1}^{\infty} \sum_{k \in \mathbf{Z}} \hat{\psi} \left(2^{n} (\boldsymbol{\xi} + 2k\pi) \right) \hat{\psi} \overline{\left(2^{j} (\boldsymbol{\xi} + 2k\pi) \right)} \hat{\psi} (2^{j} \boldsymbol{\xi})$$

a.e., then show that :

 $\mathbf{G}_n(\boldsymbol{\xi}) = \mathbf{G}_{n-1}(2\boldsymbol{\xi})$

P. T. O.

- 5. Define dual frame.
- 6. Give the statement of Balian low theorem for frames.
- 7. Define window w_i for discrete version of local sine and cosine transform.
- 8. Define projection $P_i f(x)$ from $L^2(\mathbf{R})$ onto V_i .

Section—C

D-990

3 each

(Short Answer Type Questions)

Note : Attempt any *eight* questions.

1. Suppose that :

 $\{e_i : j = 1, 2,\}$

is a system of vectors in a Hilbert space H satisfying :

$$||f||^2 = \sum_{j=1}^{\infty} |\langle f, e_j \rangle|^2$$

for all $f \in \mathbf{H}$. If $||e_j|| \ge 1$ for $j = 1, 2, \dots$; then prove that

- $\{e_j\}$ is an orthonormal basis for **H**.
- 2. If ψ is an orthonormal wavelet and $|\hat{\psi}|$ is continuous at zero, then prove that :

 $\hat{\psi}(0) = 0$

3. Suppose that :

 $\{e_i : j = 1, 2,\}$

is a family of elements in a Hilbert space H such that equality :

[8]

$$||f||^2 = \sum_{j=1}^{\infty} |\langle f, e_j \rangle|^2$$

holds all f belongs to a dense subset D of H, then prove that the equality is valid for all $f \in H$.

4. Let :

$$\mu_1, \mu_2,, \mu_n$$

be 2π -periodic functions and set :

$$\mathbf{M}_{j} = \sup_{\boldsymbol{\xi} \in \mathbf{T}} \left(\left| \boldsymbol{\mu}_{j}(\boldsymbol{\xi}) \right|^{2} + \left| \boldsymbol{\mu}_{j}(\boldsymbol{\xi} + \boldsymbol{\pi}) \right|^{2} \right)$$

then prove that :

$$\int_{-2^{n}\pi}^{2^{n}\pi} \prod_{j=1}^{n} \left| \mu_{j}(2^{-j}\xi) \right|^{2} d\xi \leq 2\pi \, \mu_{1}, \dots, \mu_{n}$$

5. Suppose that :

$$\{\psi^{(n)}: n = 1, 2,\}$$

is a sequence of MRA wavelet converging to ψ in $L^2(\mathbf{R})$. If ψ is also a wavelet, then prove that ψ must be an MRA wavelet.

 $\mathbf{H} = \mathbf{C}^2$

and

$$\phi_1 = (0, 1)$$

$$\phi_2 = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

$$\phi_3 = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

then find the values of A and B for $\{\phi_j\}_{j=1,2,3}$ to be a frame

for H.

7. If:

$$g \in \mathrm{L}^2(\mathbf{R})$$

 $(\mathbf{Q}\,g)(x) = x\,g(x)$

and

$$(\mathbf{P}g)(x) = -i g'(x)$$

prove that :

 $<\mathrm{Q}g,\tilde{g}_{m,n}>=< g_{-m,-n},\mathrm{Q}\tilde{g}>$

 $\langle Pg, \tilde{g}_{m,n} \rangle = \langle g_{-m,-n}, P\tilde{g} \rangle$

and

8. Prove that :

$$\sum_{k=0}^{N-1} \cos\left(\pi\left(x+\frac{1}{2}\right)\frac{M}{N}\right) = 0 \quad \text{for } 1 \le M \le 2N-1 \,.$$

9. Explain in short how Haar wavelet works for decomposition algorithm.

5 each

(Long Answer Type Questions)

Section-D

Note : Attempt all questions.

Let ψ ∈ L²(**R**) be such that |ψ̂| = χ_k for a measurable set k ⊂ **R**. Then prove that ψ is a wavelet if and only if there exist a partition {I_l : l ∈ **Z**} of I, partition {k_l : l ∈ **Z**} of k, and two integer valued sequences {j_l; l ∈ **Z**}, {k_l : l ∈ **Z**} such that :

 (i) k_l = 2^{j_l} I_l l ∈ **Z** (ii) {k_{l+2k_lπ} : l ∈ **Z**}
 is a partition of I.

•

Let **H** be a Hilbert space and $\{e_j : j = 1, 2,\}$ be a family of elements of **H**. Then prove that :

Or

- (i) $||f||^2 = \sum_{j=1}^{\infty} |\langle f, e_j \rangle|^2$ holds for all $f \in \mathbf{H}$ if and only if
- (ii) $f = \sum_{j=1}^{\infty} \langle f, e_j \rangle \langle e_j \rangle$ with convergence in H, for all $f \in H$.
- 2. Let $\{v_j : j \ge 1\}$ be a family of vectors in a Hilbert space **H** such that :

(i)
$$\sum_{n=1}^{\infty} \left\| v_n \right\|^2 = \mathbf{C} < \infty$$

P. T. O.

(ii)
$$v_n = \sum_{m=1}^{\infty} \langle v_n, v_m \rangle v_n \text{ for all } n \ge 1.$$

Let :

$$\mathbf{F} = \operatorname{span}\left\{v_j : j \ge 1\right\}$$

Then prove that :

$$\dim \mathbf{F} = \sum_{j=1}^{\infty} \left\| v_j \right\|^2 = \mathbf{C} \,.$$
$$Or$$

Let :

$$m_0 \in \mathcal{C}'(\mathbf{R})$$

be a 2π -periodic function which satisfies :

$$M_0 \in 1$$

 $|m_0(\xi)|^2 + |m_0(\xi + \pi)|^2 = 1$

for $\xi \in \mathbf{R}$ and there exists a set $k \subset \mathbf{R}$ which is a finite union of closed bounded intervals such that 0 is in the interior of k:

$$\sum_{k \in \mathbb{Z}} \chi_k(\xi + 2k\pi) = 1 \text{ for } \xi \in \mathbb{R}$$

and $m_0(2^{-j}\xi) \neq 0$ for all $j = 1, 2, \dots$ and all $\xi \in k$. Then prove that m_0 is the low pass filter for an MRA. 3. Suppose :

and

$$g \in L^{2}(\mathbf{R})$$

$$\begin{cases} g(x) = e^{2\pi i n x} g(x - n) : \\ m, n \end{cases}$$

[12]

is a frame for $L^2(\mathbf{R})$, $S = F^*F$, with $F'^{m,n \in \mathbb{Z}}$ is a frame operator. Prove that F^*F commutes with translation by integers with integer modulation.

Or

Suppose that :

$$\{e_j : j = 1, 2,\}$$

is a family of elements in a Hilbert space H such that there exist constants $0 < A \leq B < \infty$ satisfying :

$$A \|f\|^{2} \le \sum_{j=1}^{\infty} |\langle f, e_{j} \rangle|^{2} \le B \|f\|^{2}$$

for all f belonging to a dense subset D of H. Then prove that the same inequalities are true for all $f \in \mathbf{H}$.

4. Explain in details that what do you mean by reconstruction algorithm for wavelets.

Or

Prove that the sequence :

$$\left\{u_{j,k}: j \in \mathbf{Z}, 0 \le k \le l_j - 1\right\}$$

is an orthonormal basis for $l^2(\mathbf{Z})$.

D-990