Roll No.

D-990

M. A./M. Sc. (Fourth Semester) (Main/ATKT)

EXAMINATION, May-June, 2020

MATHEMATICS

Paper Fourth (B)
(Wavelets-II)
Time : Three Hours]
[Maximum Marks : 80
Note : Attempt all Sections as directed.

Section-A
 1 each
 (Objective/Multiple Choice Questions)

Note : Attempt all questions.
Choose the correct answer :

1. If $\psi \in \mathrm{L}^{2}(\mathbf{R})$, then expression for $\left(\psi_{j, k}\right)^{\wedge}(\xi)$ is :
(a) $\quad 2^{j / 2} \psi\left(2^{j} x-k\right)$
(b) $2^{-j / 2} \hat{\psi}\left(2^{-j} \xi\right) e^{i 2^{-j} k \xi}$
(c) $\quad 2^{-j / 2} \hat{\psi}(\xi) e^{i 2^{-j} k \xi}$
(d) None of the above
2. If $\psi \in \mathrm{L}^{2}(\mathbf{R})$, then which of the following is true?
(a) $\left.\quad \sum_{j, k \in \mathbf{Z}}\left|<f, \Psi_{j, k}\right\rangle\right|^{2} \leq\|f\|_{2}^{2}$
(b) $\quad \sum_{j, k \in \mathbf{Z}}\left|<f, \psi_{j, k}>\right|^{2} \geq\|f\|_{2}^{2}$
(c) $\quad \sum_{j, k \in \mathbf{Z}}\left|<f, \psi_{j, k}>\right|^{2}=\|f\|_{2}^{2}$
(d) None of the above
3. If $\left\{e_{j}: j=1,2, \ldots.\right\}$ is a system of vectors in a Hilbert space H , satisfying :

$$
\|f\|_{2}^{2}=\sum_{j=1}^{\infty}\left|<f, e_{j}>\right|^{2}
$$

then for $\left\{e_{j}: j=1,2, \ldots.\right\}$ to be $j=1$ a orthnormal basis condition is :
(a) $\left\|e_{j}\right\| \geq 1$ for $j=1,2, \ldots \ldots$
(b) $\left\|e_{j}\right\|=1$ for $j=1,2, \ldots \ldots$
(c) $\left\|e_{j}\right\| \leq 1$ for $j=1,2, \ldots \ldots$
(d) None of the above
4. If $\left\{e_{j}: j=1,2, \ldots.\right\}$ is a system of vectors in H , then the expression for Nth partial sum for $f \in \mathrm{H}$ is :
(a) $\mathrm{S}_{\mathrm{N}}=\sum_{j=1}^{\infty}<f, e_{j}>e_{j}$
(b) $\mathrm{S}_{\mathrm{N}}=\sum_{j=0}^{\mathrm{N}}<f, e_{j}>e_{j}$
(c) $\mathrm{S}_{\mathrm{N}}=\sum_{j=1}^{\mathrm{N}}<f, e_{j}>e_{j}$
(d) None of the above
5. Give an example of dense subset of $L^{2}(\mathbf{R})$.
6. Define $l^{2}(z)$.
7. If ψ is an MRA wavelet, then :

$$
\operatorname{dim} \mathrm{F}_{\psi}(\xi)=?
$$

for $\xi \in \mathbf{T}$:
(a) 1
(b) 0
(c) ∞
(d) None of the above
8. Limit of a sequence of MRA wavelet is a \qquad wavelet.
(a) Band limited
(b) Convergent
(c) Continuous
(d) None of the above
9. Define low pass filter.
10. Define $V_{0}^{\mathbf{I}}$.
11. Every orthonormal wavelet is a frame. (True/False)
12. Domain and codomain of a frame operator F are respectively :
(a) H and $l^{2}(\mathrm{~J})$
(b) $\quad l^{2}(\mathbf{R})$ and H
(c) $\quad l^{2}(\mathbf{R})$ and $l^{2}(\mathrm{~J})$
(d) None of the above
13. Frame bounds for Zak transform $\mathbf{R}_{g}(s, t)$ are given by :
(a) $0<\mathrm{A} \leq\left|\mathrm{R}_{g}(s, t)\right| \leq \mathrm{B} .<\infty$
(b) $\quad-\mathrm{A}<\left|\mathrm{R}_{g}(s, t)\right| \leq+\mathrm{B}<\infty$
(c) $0<\mathrm{A} \leq\left|\mathrm{R}_{g}(s, t)\right|^{2} \leq \mathrm{B}<\infty$
(d) None of the above
14. Domain and codomain of a Zak transform R are given by :
(a) $L^{2}\left(\mathbf{T}^{2}\right)$ and $L^{2}(\mathbf{R})$ respectively.
(b) $L^{2}(\mathbf{R})$ and $L^{2}\left(\mathbf{T}^{2}\right)$ respectively.
(c) $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$ and $\mathrm{L}^{2}(\mathbf{T})$ respectively.
(d) None of the above
15. Define $H^{2}(\mathbf{R})$.
16. An expression of discrete cosine bases $u_{j, k}(x)=$?
(a) $\quad u_{j, k}(x)=\sqrt{\frac{2}{l_{j}}} w_{j}(x) \cos \left(\pi\left(k+\frac{1}{2}\right)\left(\frac{x-a_{j}}{l_{j}}\right)\right)$
(b) $\quad u_{j, k}(x)=\sqrt{\frac{2}{l_{j}}} w_{j}(x)$
(c) $\quad u_{j, k}(x)=\sqrt{\frac{2}{w_{j}(x)}} l_{j}(x) \cos (\pi k x)$
(d) None of the above
17. The discrete version for local sine and cosine bases support of $\mathrm{F}_{j}=$? , where \qquad F_{j} is a subspace of $l^{2}(\mathbf{Z})$.
18. The expression for filter $m_{1}(\xi)$ used in the decomposition algorithm of wavelets is :
(a) $\sum_{n \in \mathbf{Z}} \alpha_{n} e^{i n \xi}$
(b) $e^{i \xi} \overline{m_{0}(\xi)}$
(c) $e^{i \xi} \overline{m_{0}(\xi+\pi)}$
(d) None of the above
19. An expression for $\phi_{j-1, k}(x)$, which belongs to V_{j-1} is :
(a) $\sqrt{2} \sum_{n \in \mathbf{Z}} \alpha_{n} \phi_{j, k}(x)$
(b) $\sqrt{2} \sum_{n \in \mathbf{Z}} \alpha_{n} \phi_{j, 2 k-n}(x)$
(c) $\sqrt{2} \sum_{n \in \mathbf{Z}} \alpha_{n} \psi_{j, 2 k-n}(x)$
(d) None of the above
20. An expression for $d_{j-1},{ }_{k}$ in the decomposition algorithm of Haar wavelet is :
(a) $\quad d_{j-1},{ }_{k}=\sqrt{2}\left[\frac{\mathrm{C}_{j, 2 k-1}-\mathrm{C}_{j, 2 k}}{2}\right]$
(b) $d_{j-1},{ }_{k}=\sqrt{2} \mathrm{C}_{j, 2 k-1}$
(c) $\quad d_{j-1},{ }_{k}=\sqrt{2}\left[\frac{\mathrm{C}_{j, k-1}-\mathrm{C}_{j, k}}{2}\right]$
(d) None of the above

Section-B

2 each

(Very Short Answer Type Questions)

Note : Attempt all questions.

1. Write two basic equations for $\psi \in L^{2}(\mathbf{R})$ to be an orthonormal wavelet.
2. Define M. S. F. wavelet.
3. Write necessary and sufficient conditions for a function $\phi \in \mathrm{L}^{2}(\mathbf{R})$ to be a scaling function.
4. If ψ is an orthonormal wavelet and :
$\mathrm{G}_{n}(\xi)=\sum_{j=1}^{\infty} \sum_{k \in \mathbf{Z}} \hat{\psi}\left(2^{n}(\xi+2 k \pi)\right) \hat{\psi} \overline{\left(2^{j}(\xi+2 k \pi)\right)} \hat{\psi}\left(2^{j} \xi\right)$
a.e., then show that :

$$
\mathrm{G}_{n}(\xi)=\mathrm{G}_{n-1}(2 \xi)
$$

5. Define dual frame.
6. Give the statement of Balian low theorem for frames.
7. Define window w_{i} for discrete version of local sine and cosine transform.
8. Define projection $\mathrm{P}_{j} f(x)$ from $\mathrm{L}^{2}(\mathbf{R})$ onto V_{j}.

Section-C

3 each

(Short Answer Type Questions)

Note : Attempt any eight questions.

1. Suppose that :

$$
\left\{e_{j}: j=1,2, \ldots .\right\}
$$

is a system of vectors in a Hilbert space \mathbf{H} satisfying :

$$
\|f\|^{2}=\sum_{j=1}^{\infty}\left|<f, e_{j}>\right|^{2}
$$

for all $f \in \mathbf{H}$. If $\left\|e_{j}\right\| \geq 1$ for $j=1,2, \ldots \ldots$; then prove that $\left\{e_{j}\right\}$ is an orthonormal basis for \mathbf{H}.
2. If ψ is an orthonormal wavelet and $|\hat{\psi}|$ is continuous at zero, then prove that :

$$
\hat{\psi}(0)=0
$$

3. Suppose that:

$$
\left\{e_{j}: j=1,2, \ldots\right\}
$$

is a family of elements in a Hilbert space H such that equality:

$$
\|f\|^{2}=\left.\sum_{j=1}^{\infty}\left|<f, e_{j}\right\rangle\right|^{2}
$$

holds all f belongs to a dense subset D of H , then prove that the equality is valid for all $f \in \mathrm{H}$.
4. Let :

$$
\mu_{1}, \mu_{2}, \ldots \ldots, \mu_{n}
$$

be 2π-periodic functions and set:

$$
\mathrm{M}_{j}=\sup _{\xi \in \mathbf{T}}\left(\left|\mu_{j}(\xi)\right|^{2}+\left|\mu_{j}(\xi+\pi)\right|^{2}\right)
$$

then prove that :

$$
\int_{-2^{n} \pi}^{2^{n} \pi} \prod_{j=1}^{n}\left|\mu_{j}\left(2^{-j} \xi\right)\right|^{2} d \xi \leq 2 \pi \mu_{1}, \ldots . \mu_{n}
$$

5. Suppose that:

$$
\left\{\psi^{(n)}: n=1,2, \ldots .\right\}
$$

is a sequence of MRA wavelet converging to ψ in $L^{2}(\mathbf{R})$. If
ψ is also a wavelet, then prove that ψ must be an MRA wavelet.
6. Let :
and

$$
\begin{aligned}
\mathrm{H} & =\mathrm{C}^{2} \\
\phi_{1} & =(0,1) \\
\phi_{2} & =\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \\
\phi_{3} & =\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)
\end{aligned}
$$

then find the values of A and B for $\left\{\phi_{j}\right\}_{j=1,2,3}$ to be a frame for \mathbf{H}.
7. If :

$$
\begin{gathered}
g \in \mathrm{~L}^{2}(\mathbf{R}) \\
(\mathrm{Q} g)(x)=x g(x)
\end{gathered}
$$

and

$$
(\mathrm{P} g)(x)=-i g^{\prime}(x)
$$

prove that :
and

$$
\begin{aligned}
& <\mathrm{Q} g, \tilde{g}_{m, n}>=<g_{-m,-n}, \mathrm{Q} \tilde{g}> \\
& <\mathrm{P} g, \tilde{g}_{m, n}>=<g_{-m,-n}, \mathrm{P} \tilde{g}>
\end{aligned}
$$

8. Prove that :

$$
\sum_{k=0}^{\mathrm{N}-1} \cos \left(\pi\left(x+\frac{1}{2}\right) \frac{\mathrm{M}}{\mathrm{~N}}\right)=0 \text { for } 1 \leq \mathrm{M} \leq 2 \mathrm{~N}-1
$$

9. Explain in short how Haar wavelet works for decomposition algorithm.

Section-D

(Long Answer Type Questions)

Note : Attempt all questions.

1. Let $\psi \in \mathrm{L}^{2}(\mathbf{R})$ be such that $|\hat{\psi}|=\chi_{k}$ for a measurable set $k \subset \mathbf{R}$. Then prove that ψ is a wavelet if and only if there exist a partition $\left\{\mathrm{I}_{l}: l \in \mathbf{Z}\right\}$ of I , partition $\left\{k_{l}: l \in \mathbf{Z}\right\}$ of k, and two integer valued sequences $\left\{j_{l} ; l \in \mathbf{Z}\right\}$, $\left\{k_{l}: l \in \mathbf{Z}\right\}$ such that :
(i) $k_{l}=2^{j_{l}} \mathrm{I}_{l} l \in \mathbf{Z}$
(ii) $\left\{k_{l+2 k_{l} \pi}: l \in \mathbf{Z}\right\}$
is a partition of I.

Or

Let \mathbf{H} be a Hilbert space and $\left\{e_{j}: j=1,2, \ldots.\right\}$ be a family of elements of \mathbf{H}. Then prove that :
(i) $\|f\|^{2}=\left.\sum_{j=1}^{\infty}\left|<f, e_{j}\right\rangle\right|^{2}$ holds for all $f \in \mathbf{H}$ if and only if
(ii) $f=\sum_{j=1}^{\infty}<f, e_{j}>e_{j}$ with convergence in H , for all $f \in \mathrm{H}$.
2. Let $\left\{v_{j}: j \geq 1\right\}$ be a family of vectors in a Hilbert space \mathbf{H} such that:
(i) $\sum_{n=1}^{\infty}\left\|v_{n}\right\|^{2}=\mathrm{C}<\infty$
(ii) $\quad v_{n}=\sum_{m=1}^{\infty}<v_{n}, v_{m}>v_{n}$ for all $n \geq 1$.

Let :

$$
\mathrm{F}=\overline{\operatorname{span}\left\{v_{j}: j \geq 1\right\}}
$$

Then prove that :

$$
\begin{gathered}
\operatorname{dim} \mathrm{F}=\sum_{j=1}^{\infty}\left\|v_{j}\right\|^{2}=\mathrm{C} \\
O r
\end{gathered}
$$

Let :

$$
m_{0} \in \mathrm{C}^{\prime}(\mathbf{R})
$$

be a 2π-periodic function which satisfies :

$$
\begin{gathered}
\mathrm{M}_{0} \in 1 \\
\left|m_{0}(\xi)\right|^{2}+\left|m_{0}(\xi+\pi)\right|^{2}=1
\end{gathered}
$$

for $\xi \in \mathbf{R}$ and there exists a set $k \subset \mathrm{R}$ which is a finite union of closed bounded intervals such that 0 is in the interior of k :

$$
\sum_{k \in \mathbf{Z}} \chi_{k}(\xi+2 k \pi)=1 \text { for } \xi \in \mathbf{R}
$$

and $m_{0}\left(2^{-j} \xi\right) \neq 0$ for all $j=1,2, \ldots \ldots$ and all $\xi \in k$.
Then prove that m_{0} is the low pass filter for an MRA.
3. Suppose :

$$
\begin{gathered}
g \in \mathrm{~L}^{2}(\mathbf{R}) \\
\left\{\begin{array}{c}
g(x) \\
g, n
\end{array}=e^{2 \pi i n x} g(x-n):\right\}
\end{gathered}
$$

and
is a frame for $\mathrm{L}^{2}(\mathbf{R}), \mathrm{S}=\mathrm{F} * \mathrm{~F}$, with $\mathrm{F}^{\prime m, n \in \mathbf{Z}}$ is a frame operator. Prove that $\mathrm{F} * \mathrm{~F}$ commutes with translation by integers with integer modulation.

Or
Suppose that :

$$
\left\{e_{j}: j=1,2, \ldots .\right\}
$$

is a family of elements in a Hilbert space \mathbf{H} such that there exist constants $0<A \leq B<\infty$ satisfying :

$$
\mathrm{A}\|f\|^{2} \leq \sum_{j=1}^{\infty}\left|<f, e_{j}>\right|^{2} \leq \mathrm{B}\|f\|^{2}
$$

for all f belonging to a dense subset D of \mathbf{H}. Then prove that the same inequalities are true for all $f \in \mathbf{H}$.
4. Explain in details that what do you mean by reconstruction algorithm for wavelets.

$$
O r
$$

Prove that the sequence :

$$
\left\{u_{j, k}: j \in \mathbf{Z}, 0 \leq k \leq l_{j}-1\right\}
$$

is an orthonormal basis for $l^{2}(\mathbf{Z})$.

