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M. A./M. Sc. (Fourth Semester) (Main/ATKT) 

EXAMINATION, May-June, 2020 

MATHEMATICS 

Paper Fourth (B) 

(Wavelets—II) 

Time : Three Hours ]  [ Maximum Marks : 80 

Note : Attempt all Sections as directed. 

 Section—A 1 each 

(Objective/Multiple Choice Questions) 

Note : Attempt all questions. 

Choose the correct answer : 

1. If 2L ( ),  R  then expression for ,( ) ^ ( )j k   is : 

(a) / 22 (2 )j j x k    

(b) / 2 2ˆ2 (2 )
jj j i ke

     

(c) / 2 2ˆ2 ( )
jj i ke

    

(d) None of the above  
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2. If 2L ( ),  R  then which of the following is true ? 

(a) 
2 2

, 2
,

, j k
j k

f f


   
Z

  

(b) 
2 2

, 2
,

, j k
j k

f f


   
Z

 

(c) 
2 2

, 2
,

, j k
j k

f f


   
Z

 

(d) None of the above 

3. If { : 1, 2, ....}je j   is a system of vectors in a Hilbert space 

H, satisfying :  

22
2

1

, j
j

f f e



     

then for { : 1, 2, ....}je j   to be j = 1 a orthnormal basis 

condition is : 

(a) 1je   for j = 1, 2, ...... 

(b) 1je   for j = 1, 2, ...... 

(c) 1je   for j = 1, 2, ...... 

(d) None of the above 
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4. If { : 1, 2, ....}je j   is a system of vectors in H, then the 

expression for Nth partial sum for Hf   is : 

(a) N
1

S , j j
j

f e e



     

(b) 
N

N
0

S , j j
j

f e e


    

(c) 
N

N
1

S , j j
j

f e e


    

(d) None of the above 

5. Give an example of dense subset of 2L ( ).R   

6. Define 2 ( ).l z   

7. If  is an MRA wavelet, then : 

dim F ( )   ?  

for   T  :   

(a) 1 

(b) 0 

(c)   

(d) None of the above 

8. Limit of a sequence of MRA wavelet is a .............. wavelet.  

(a) Band limited  

(b) Convergent  

(c) Continuous  

(d) None of the above 
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9. Define low pass filter.  

10. Define 0VI .  

11. Every orthonormal wavelet is a frame. (True/False) 

12. Domain and codomain of a frame operator F are respectively : 

(a) H and 2 (J)l   

(b) 2( )l R  and H 

(c) 2( )l R  and 2 (J)l  

(d) None of the above 

13. Frame bounds for Zak transform ( , )g s tR  are  given by : 

(a) 0 A R ( , ) B.g s t       

(b) A R ( , ) Bg s t       

(c) 
2

0 A R ( , ) Bg s t      

(d) None of the above 

14. Domain and codomain of a Zak transform R are given by : 

(a) 2 2L ( )T and 2L ( )R  respectively.   

(b) 2L ( )R  and 2 2L ( )T  respectively.  

(c) 2 2L ( )R  and 2L ( )T  respectively. 

(d) None of the above 

15. Define 2H ( ).R   
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16. An expression of discrete cosine bases , ( )j ku x  ? 

(a) ,
2 1

( ) ( ) cos
2

j
j k j

j j

x a
u x w x k

l l

                
  

(b) ,
2

( ) ( )j k j
j

u x w x
l

  

(c) ,
2

( ) ( ) cos ( )
( )j k j

j
u x l x kx

w x
   

(d) None of the above 

17. The discrete version for local sine and cosine bases support 

of F ?j  , where ........... Fj  is a subspace of 2 ( ).l Z    

18. The expression for filter 1( )m   used in the decomposition 

algorithm of wavelets is : 

(a) in
n

n

e 




Z

  

(b) 0 ( )ie m    

(c) 0( )ie m     

(d) None of the above 

19. An expression for 1, ( ),j k x  which belongs to 1Vj  is : 

(a) ,2 ( )n j k
n

x


 
Z

  

(b) ,22 ( )n j k n
n

x


 
Z

 

(c) ,22 ( )n j k n
n

x


 
Z

 

(d) None of the above 
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20. An expression for 1,j kd   in the decomposition algorithm of 

Haar wavelet is :  

(a) ,2 1 ,2
1

C C
, 2

2
j k j k

j kd 


 
  

 
  

(b) 1 ,2 1, 2 Cj k j kd    

(c) , 1 ,
1

C C
, 2

2
j k j k

j kd 


 
  

 
 

(d) None of the above 

 Section—B 2 each 

(Very Short Answer Type Questions) 

Note : Attempt all questions. 

1. Write two basic equations for 2L ( )  R to be an 

orthonormal wavelet.  

2. Define M. S. F. wavelet.  

3. Write necessary and sufficient conditions for a function 

2L ( )  R  to be a scaling function.  

4. If  is an orthonormal wavelet and : 

      
1

ˆ ˆ ˆG ( ) 2 ( 2 ) 2 ( 2 ) (2 )n j j
n

j k

k k


 
            

Z

 

a.e., then show that : 

1G ( ) G (2 )n n     
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5. Define dual frame.  

6. Give the statement of Balian low theorem for frames.  

7. Define window iw  for discrete version of local sine and 

cosine transform.  

8. Define projection P ( )j f x  from 2L ( )R  onto V j .  

 Section—C 3 each 

(Short Answer Type Questions) 

Note : Attempt any eight questions. 

1. Suppose that : 

{ : 1, 2, ....}je j    

is a system of vectors in a Hilbert space H satisfying :  

22

1

, j
j

f f e



    

for all .f  H  If 1je   for j = 1, 2, ...... ; then prove that 

 je  is an orthonormal basis for H.   

2. If  is an orthonormal wavelet and ̂  is continuous at zero, 

then prove that :  

ˆ (0) 0     

3. Suppose that : 

{ : 1, 2, ....}je j   
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is a family of elements in a Hilbert space H such that 

equality : 

22

1

, j
j

f f e



    

holds all f belongs to a dense subset D of H, then prove that 

the equality is valid for all H.f    

4. Let : 

1 2, , ......, n    

be 2-periodic functions and set : 

2 2
M sup ( ) ( )j j j



         
 T

 

then prove that : 

2 2
12

1

(2 ) 2 , ....
n

n

n
j

j n
j

d
 

 


            

5. Suppose that : 

( ){ : 1, 2, ....}n n   

is a sequence of MRA wavelet converging to  in 2L ( )R . If 

 is also a wavelet, then prove that  must be an MRA 

wavelet.  
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6. Let : 

2H C   

and                    1   (0, 1) 

         2
3 1

,
2 2

 
    

 
 

            3
3 1

,
2 2

 
    

 
 

then find the values of A and B for  
1,2,3j j

  to be a frame 

for H.    

7. If : 

2L ( )g  R  

(Q ) ( ) ( )g x x g x  

and                          (P ) ( ) ( )g x i g x   

prove that : 

, ,Q , , Qm n m ng g g g        

and              , ,P , , Pm n m ng g g g        

8. Prove that : 

N 1

0

1 M
cos 0

2 Nk

x




      
  

   for 1 M 2N 1   .  

9. Explain in short how Haar wavelet works for decomposition 

algorithm.  
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 Section—D 5 each 

(Long Answer Type Questions) 

Note : Attempt all questions. 

1. Let 2L ( )  R  be such that ˆ k    for a measurable set 

k  R . Then prove that  is a wavelet if and only if there 

exist a partition   I :l l  Z  of I, partition { : }lk l  Z  of 

k, and two integer valued sequences  ;lj l  Z , 

 :lk l  Z  such that : 

(i) 2 Ilj
l lk l  Z  

(ii) 2{ : }
ll kk l   Z   

is a partition of I.   

Or 

Let H be a Hilbert space and { : 1, 2, ....}je j  be a family of 

elements of H. Then prove that : 

(i) 
22

1

, j
j

f f e



    holds for all f  H  if and 

only if 

(ii)  
1

, j j
j

f f e e



    with convergence in H, for all

Hf  .  

2. Let  : 1jv j   be a family of vectors in a Hilbert space H 

such that : 

(i) 2

1

Cn
n

v
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(ii) 
1

,n n m n
m

v v v v



    for all 1n  . 

 Let : 

 F span : 1jv j   

 Then prove that : 

dim
2

1

F Cj
j

v



  . 

Or 

 Let : 

0 C ( )m  R  

 be a 2-periodic function which satisfies : 

0M 1  

2 2
0 0( ) ( ) 1m m       

for   R  and there exists a set Rk   which is a finite 

union of closed bounded intervals such that 0 is in the 

interior of k : 

( 2 ) 1k
k

k


    
Z  

for   R   

and 0 (2 ) 0jm    for all j = 1, 2, ...... and all .k   

Then prove that 0m  is the low pass filter for an MRA.   
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3. Suppose : 

2L ( )g  R  

and                       2

,
( ) ( ) :inx

m n
g x e g x n    

  
 

is a frame for 2L ( )R , S = F*F, with ,F m n Z  is a frame 

operator. Prove that F*F commutes with translation by 
integers with integer modulation.   

Or 

Suppose that : 

{ : 1, 2, ....}je j   

is a family of elements in a Hilbert space H such that there 
exist constants 0 A B     satisfying : 

22 2

1

A , Bj
j

f f e f



      

for all f belonging to a dense subset D of H. Then prove that 
the same inequalities are true for all .f  H    

4. Explain in details that what do you mean by reconstruction 
algorithm for wavelets.  

Or 

Prove that the sequence : 

 , : , 0 1j k ju j k l   Z  

is an orthonormal basis for 2 ( ).l Z    
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