D-3754

M. A./M. Sc. (Previous)
 EXAMINATION, 2020

MATHEMATICS

Paper Fourth
(Complex Analysis)
Time : Three Hours]
[Maximum Marks : 100
Note : All questions are compulsory. Attempt any two Parts from each Unit. All questions carry equal marks.

Unit-I

1. (a) State and prove Cauchy-Goursat theorem.
(b) Let $f(z)$ be analytic within and on a closed contour C , and let a be any point within C. Then :

$$
f(a)=\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{f(z)}{z-a} d z
$$

(c) If $f(z)$ is analytic within and on a closed contour C except at a finite number of poles and has no zeros on C. then :

$$
\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{f^{\prime}(z)}{f(z)} d z=\mathrm{N}-\mathrm{P}
$$

where N is the number of zeros and P is the number of poles inside C .

Unit-II

2. (a) Apply the calculus of residue to prove that:

$$
\int_{0}^{\infty} \frac{\cos m x}{a^{2}+x^{2}} d x=\frac{\pi}{2 a} e^{-m a}
$$

where $m \geq 0, a>0$.
(b) State and prove Montel's theorem.
(c) Find the bilinear transformation which maps the points

$$
z_{1}=2, z_{2}=i, z_{3}=-2
$$

into the points

$$
w_{1}=1, w_{2}=i, w_{3}=-1 .
$$

Unit-III

3. (a) State and prove Runge's theorem.
(b) Let (f, D) be a function element and let G be a region containing D such that (f, D) admits unrestricted continuation in G. Let $a \in \mathrm{D}, b \in \mathrm{G}$ and let γ_{0} and γ_{1} be paths in G from a to b. Let $\left\{\left(f_{t}, \mathrm{D}_{t}\right): 0 \leq t \leq 1\right\}$ and $\left\{\left(g_{t}, \mathrm{D}_{t}\right): 0 \leq t \leq 1\right\}$ be analytic continuations of (f, D) along γ_{0} and γ_{1} respectively. If γ_{0} and γ_{1} are fixed-end-point homotopic in G, then :

$$
\left[f_{1}\right]_{b}=\left[g_{1}\right]_{b}
$$

(c) State and prove Harnack's Inequality.

Unit-IV

4. (a) Let $f(z)$ be analytic in the closed disc $|z| \leq \mathrm{R}$. Assume that $f(0) \neq 0$ and no zeros of $f(z)$ lies on
$|z|=\mathrm{R}$. If $z_{1}, z_{2}, \ldots \ldots, \mathrm{z}_{n}$ are the zeros of $f(z)$ in the open disc $|z|<\mathrm{R}$, each repeated as often as its multiplicity and $z=r e^{i \theta}, 0 \leq r<\mathrm{R}, f(z) \neq 0$, then :

$$
\begin{aligned}
& \log |f(z)|=-\sum_{i=1}^{n} \log \left|\frac{\mathrm{R}^{2}-\bar{z}_{i} z}{\mathrm{R}\left(z-z_{i}\right)}\right| \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(\mathrm{R}^{2}-r^{2}\right) \log \left|f\left(\mathrm{Re}^{i \phi}\right)\right|}{\mathrm{R}^{2}-2 \mathrm{R} r \cos (\theta-\phi)+r^{2}} d \phi
\end{aligned}
$$

(b) Let f be a non-constant function. Define :

$$
\rho_{1}=\inf \left\{\lambda \geq 0: \mathrm{M}(r) \leq \exp \left(r^{\lambda}\right)\right.
$$

for sufficiently larger\}

$$
\rho_{2}=\limsup _{r \rightarrow \infty} \frac{\log \log \mathrm{M}(r)}{\log r}
$$

then $\rho_{1}=\rho_{2}$.
(c) If $f(z)$ is an entire function of order ρ and convergence exponent σ, then $\sigma \leq \rho$.

Unit-V

5. (a) Let f be analytic in $\mathrm{D}=\{z:|z|<1\}$ and let $f(0)=0, f^{\prime}(0)=1$ and $|f(z)| \leq \mathrm{M}$ for all z in D .
Then $\mathrm{M} \geq 1$ and $f(\mathrm{D}) \supset \mathrm{B}\left(0 ; \frac{1}{6 \mathrm{M}}\right)$.
(b) State and prove Montel Caratheodory theorem.
(c) State and prove the Great-Picard theorem.
